• 1
  • 2
  • 3
  • 4
  • 5
Casale 11 - Nuova Sede CHOSE

 

Il 6 Giugno 2017 presso il CASALE 11- Università degli Studi di Roma "Tor Vergata", si terrà l'inaugurazione della nuova sede del Polo Solare Organico e, nell'ambito del Festival dello Sviluppo Sostenibile 2017, il convegno "L'energia per il futuro tra cambiamenti climatici e innovazione tecnologica".

Per prendere visione del programma dell'evento e registrarsi, consultare la pagina dedicata all'Inaugurazione della nuova sede del Polo Solare Organico »

 

Breaking news: CHOSE push the record of Perovskite module efficiency up to 13%

Researchers of CHOSE fabricated a Perovskite module on 10cm2 active area with a record efficiency of 13%. The results of the work have been published on Progress in Photovoltaics.

ABSTRACT
We fabricated monolithic solid state modules based on organometal CH3NH3PbI3 and CH3NH3PbI3-xClx perovskites using poly-(3-hexylthiophene) and Spiro-OMeTAD as hole transport materials (HTMs). In particular, we developed innovative and scalable patterning procedures to minimize the series resistance at the integrated series-interconnections. By using these optimization steps, we reached a maximum conversion efficiency of 8.2% under AM1.5G at 1 Sun illumination conditions using the CH3NH3PbI3-xClx perovskite and the poly-(3-hexylthiophene) as HTM. Finally, we investigated the double-step deposition of CH3NH3PbI3 using the Spiro-OMeTAD, reaching a maximum conversion efficiency on active area (10.08 cm2) equal to 13.0% (9.1% on aperture area) under AM1.5G at 1 Sun illumination conditions. This remarkable result represents the highest PCE value reached for the perovskite solar modules.

 
facebook badge

MASTER MIF

logo MIF

CHOSE organizza in collaborazione con l'Università degli Studi di Roma Tor Vergata e l'associazione FREEnergy un Master di II livello in "Ingegneria del Fotovoltaico" .

Leggi tutto...

 

logo University of Rome Tor Vergata
Università degli Studi di Roma
"Tor Vergata"


logo Regione Lazio

 

logo freenergy

 

logo LAREA - LAboratorio di Rilievo E Architettura

GRAPHENE-PEROVSKITE

Graphene-Perovskite Solar module with efficiency 12.6%

Graphene-Perovskite Solar module with efficiency 12.6% on 50 cm2

Graphene interface engineering (GIE) is proposed as an effective way to boost efficiency in Perovskite solar cells and modules. A record efficiency of 12.6% on 50 cm2 module active area has been achieved by introduce Graphene in the mesoporous TiO2 and lithium neutralized graphene oxide (GO-Li) at the mTiO2/perovskite.
Results have been published on ACS Energy Lett. 2017, 2, 279−287

Get the article...

REDUCED GRAPHENE OXIDE

Reduced Graphene Oxide

Reduced Graphene Oxide as Efficient and Stable Hole Transporting Material in Mesoscopic Perovskite Solar Cells
Nano Energy
DOI: 10.1016/j.nanoen.2016.02.027

Get the article...

PEROVSKITE MODULE

perovskite module

We fabricated the first perovskite-based monolithic series-type module showing very promising results in terms of the power conversion efficiency, the reproducibility of the fabrication process and long-term stability.

Leggi tutto...

PEROVSKITE SOLAR CELLS

We fabricated perovskite based solar cells using CH3NH3PbI3-xClx with different hole transporting materials such as Spiro-OMeTAD and P3HT.

Leggi tutto...

SDSC MODULE

We fabricated the first solid state dye solar cell (SDSC) module using poly(3-hexilthiophene) (P3HT) as Hole Transport Material for the dye regeneration process.

Leggi tutto...

A COATING FOR ALL

Fully sprayed polymer solar cell modules open the way to bring Photovoltaics nominally everywhere, thanks to spray coating conformability to virtually any kind of substrate.

Leggi tutto...

GREENHOUSE

THE PHOTOVOLTAIC GREENHOUSE

We have demonstrated the feasibility of the fabrication of a photovoltaic greenhouse roof by using techniques based on solution processing (spray coating and screen printing).

Leggi tutto...

This website uses cookies to allow us to see how the site is used. The cookies cannot identify you. Cookies are files stored in your browser and are used by websites to help personalise your web experience. By continuing to use our website without changing the settings, you are agreeing to our use of cookies. However you can change your cookie settings at any time.