CHI SIAMO

Il Polo Solare Organico della Regione Lazio (CHOSE) è nato nel 2006 dalla volontà della Regione Lazio e dell'Università degli Studi di Roma Tor Vergata di creare un centro di eccellenza nel settore del fotovoltaico di nuova generazione.

Leggi tutto...

CELLE FOTOVOLTAICHE ORGANICHE

Il campo delle celle solari organiche comprende tutti quei dispositivi la cui parte fotoattiva è basata sui composti organici del carbonio. La struttura base di una cella organica è semplice: essa è detta "a sandwich" ed è composta da un substrato, generalmente vetro ma anche plastica flessibile, e da una o più sottilissime pellicole, che contengono i materiali fotoattivi, frapposte tra due elettrodi conduttivi (vedere Figura 1).

Le celle organiche più efficienti, ispirandosi al processo di fotosintesi clorofilliana, utilizzano una miscela di materiali in cui un pigmento assorbe la radiazione solare e gli altri componenti estraggono la carica per produrre elettricità. La gamma di pigmenti che possono essere impiegati include quelli a base vegetale, come le antocianine derivate dai frutti di bosco, i polimeri e le molecole sintetizzate in modo da massimizzare l'assorbimento dello spettro solare.

DSSC Cell         Dye sensitized solar cell (DSC) module
Figura 1. Esempio di cella fotovoltaica organica (a sinistra) e modulo (a destra)

 

La gamma di celle solari organiche è ampia e si trova in diversi stadi di ricerca e di maturazione tecnologica e comprende, in sintesi, le celle “dye sensitized” (la cui parte fotoelettricamente attiva è costituita da un pigmento, da ossido di titanio e da un elettrolita), organiche (la cui parte attiva è totalmente organica o polimerica), ibride organico/inorganico e ibride biologico. In queste ultime, allo scopo di permettere l'utilizzazione di materiali biologici in dispositivi optoeletronici pratici, la ricerca punta a stabilizzare tali materiali, attraverso per esempio particolari surfactanti, e anche ad aumentare l'efficienza d'assorbimento della cella stessa (oggi le efficienze si avvicinano all’1%).

Questo tipo di cella è particolarmente interessante per la bio-compatibilità del materiale fotoattivo (la gamma utilizzabile va dalle antocianine fino a veri e propri complessi proteici fotosintetici estratti, per esempio, dalle foglie di spinaci) e per applicazioni dove questo aspetto è vantaggioso e desiderabile. Infatti un'altra componente importante che viene utilizzata frequentemente nella cella solare, per estrarre la carica generata nel pigmento dopo l'assorbimento della luce, è una pasta di ossido di titanio: un ingrediente comune e certamente eco-compatibile che si trova in innumerevoli prodotti, come dentifrici, vernici idrosolubili per interni e creme solari. L'ambizione della ricerca in questo tipo di cella è difatti proprio quella di sviluppare una cella solare all'insegna della bio-eco-compatibilità.

Le celle dye sensitized attualmente più vicine ad una maturazione tecnologica, e quindi ad uno sfruttamento commerciale per applicazione su larghe aree, sono quelle in cui il pigmento è stato sintetizzato attraverso i processi della chimica organica, anche dopo complessi studi di simulazione teorica, con lo scopo di aumentarne il più possibile la fotostabilità e l'assorbimento totale dello spettro solare. Efficienze massime del 10%-12% e tempi di vita di vari anni, valori comunque in costante aumento, sono stati misurati in laboratorio per questo tipo di cella.

Le celle fotovoltaiche invece completamente polimeriche sono recentemente arrivate al 4%-5% di efficienza massima. Per aumentarne ancora l'efficienza e specialmente il tempo di vita, rendendole quindi appetibili per applicazioni in cui la durata è importante, sono in atto grossi sforzi di ricerca e sviluppo, comprese nuove tecniche raffinate di incapsulamento del dispositivo e strategie quali l’introduzione di nano-cristalli inorganici nella matrice polimerica. Questo tipo di cella è molto interessante in quanto le tecniche di fabbricazione sono le più semplici da attuare e quindi con costi di produzione ancor più ridotti.

Infatti, il grosso vantaggio dei materiali fotovoltaici organici o ibridi in generale risiede nel fatto che questi possono essere depositati, su larghe aree e a costi molto ridotti, in soluzione liquida come veri e propri inchiostri o paste. È possibile quindi usare metodi tipici dell’industria della stampa e applicarli nel campo del solare organico, eliminando così gli alti costi di materiale e di processo tipici dell’industria a semiconduttore in cui la purezza e le alte temperature richieste per la liquefazione, cristallizzazione e drogaggio del silicio provocano dispendio energetico ed economico e causano inoltre scarichi nocivi per l’ambiente.

I materiali organici o ibridi, invece, una volta depositati assumono la forma di vere e proprie pellicole, che sono da qualche decina di volte fino ad oltre mille volte più sottili dei wafer in silicio. I materiali sono anche compatibili con film o rotoli di plastica e depositabili su substrati trasparenti flessibili con sensibili vantaggi nei costi, trasporto, risparmio di materiale e facilità l'installazione.

Il programma tecnico d'innovazione nella costruzione del pannello è quello quindi di utilizzare, alcune tecniche a scansione a basso costo, quale per esempio l’ink jet printing (i.e. stampa a getto di inchiostro) e lo screen printing (tecnica simile alla serigrafia). Nella costruzione delle celle verranno anche utilizzati nuovi contatti multistrato per aumentare la tensione e l’efficienza della cella.

I nuovi materiali e le nuove tecniche di fabbricazione previste presentano vantaggi notevoli. Innanzitutto sono processi additivi: cioè, solo il materiale che serve viene depositato, con risparmi in materiale di oltre il 90% rispetto ai metodi ordinari, riducendo così ulteriormente l'impatto ambientale. Inoltre, questi inchiostri sono sia utilizzabili su substrati di vetro rigidi, sia compatibili con metodi di produzione a nastro o a rullo, con ulteriore abbassamento di costi. Infine, i processi di fabbricazione da impiegare sono facilmente estensibili alla produzione di pannelli su larghe aree e su substrati flessibili o film di plastica. In futuro, attraverso anche lo sviluppo di tecniche di incapsulamento efficaci per substrati flessibili, ciò può aprire una vasta serie di nuove possibilità di integrazione, di applicazioni e di mercati (immaginate un futuro in cui si possano rivestire, con delle pellicole fotovoltaiche, una gran varietà di superfici rendendole produttrici di energia al contatto con la luce).

Si prevede che lo sviluppo dei vantaggi esposti in questo dossier e dei miglioramenti in efficienza e tempi di vita, attuabili nei prossimi anni, e necessari per rendere il fotovoltaico organico commerciabile, possano portare il costo del fotovoltaico dai circa 6-12 €/Wp dei pannelli in silicio odierni a circa 2 €/Wp o meno, rendendo finalmente competitivo il fotovoltaico con le fonti di energia odierne.

 
facebook badge

 

FACILITIES

facilities

RASSEGNA STAMPA

rassegna stampa

ISOPHOS

Isophos 2019 Banner

The 19th edition of the International School on Hybrid and Organic Photovoltaics (ISOPHOS®) will be held from the 2nd till 6th of September 2019 in the wonderful atmosphere of Castiglione della Pescaia (Italy)

Read more...

DISCOVERPLACES

CHOSE e discoverplaces.travel

CHOSE e discoverplaces.travel insieme per far scoprire le bellezze dei nostri territori.

Leggi tutto...

MASTER MIF

logo MIF

CHOSE organizza in collaborazione con l'Università degli Studi di Roma Tor Vergata e l'associazione FREEnergy un Master di II livello in "Ingegneria del Fotovoltaico" .

Leggi tutto...

 

logo University of Rome Tor Vergata
Università degli Studi di Roma
"Tor Vergata"


logo Regione Lazio

 

logo freenergy

 

logo LAREA - LAboratorio di Rilievo E Architettura

IMPORTANCE OF FERROELECTRIC DOMAINS

importance of ferroelectric domains for the performance of perovskite solar cells

On the importance of ferroelectric domains for the performance of perovskite solar cells

The effect of ferroelectric polarization patterns in MAPbI3 on JV characteristics has been analyzed. We discuss models for the polarization orientation pattern and magnitude of the ferroelectric domains. Simulations performed on real patterns show that the presence of ordered ferroelectric domains, even with a weak characteristic polarization magnitude enhances the power conversion efficiencies and are mandatory to reproduce the experimental J-V characteristics.

Read more...

CRYSTAL ENGINEERING APPROACH

A Crystal Engineering approach for perovskite solar cells and modules fabrication out of the glove box

A Crystal Engineering approach for perovskite solar cells and modules fabrication out of the glove box

we fabricated high efficiency perovskite solar cells (PSC) and perovskite solar modules (PSM) utilizing several Hole Transport Layers (HTLs). The results show that the Crystal Engineering approach remarkably improved the device performance reaching a power conversion efficiency of 17%, 16.8% and 7% for spiro-OMeTAD, P3HT and HTL free, respectively.

Read more...

FULLY-SPRAYED FLEXIBLE

fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode

Fully-sprayed flexible polymer solar cells with a cellulose-graphene electrode

Light, flexible and low-cost organic solar cells made entirely by spray and with an innovative cellulose and graphene-based electrode! The work, in collaboration with the Smart Materials group of the ISTITUTO ITALIANO DI TECNOLOGIA has been published on the important magazine "Materials Today Energy".

Read more...

UNDER INDOOR ILLUMINATION

Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed sno2/mgo composite electron transport layers

Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed sno2/mgo composite electron transport layers

A new architectures in CH3NH3PbI3 based planar perovskite solar cells incorporating solution processed SnO2/MgO composite electron transport layers that show the highest power outputs ever reported under typical 200–400 lx indoor illumination conditions.

Read more...

SOLAR CELLS ON PAPER

perovskite solar cells on paper and the role of substrates and electrodes on performance

Perovskite solar cells on paper and the role of substrates and electrodes on performance

The first perovskite solar cell (PSC) fabricated directly on a paper substrate with a maximum power conversion efficiency of 2.7% is here reported.

Read more...

APOCAROTENOIDS PIGMENTS

photoelectrochemical and spectrophotometric studies on dye-sensitized solar cells (dscs) and stable modules (dscms) based on natural apocarotenoids pigments

Photoelectrochemical and spectrophotometric studies on dye-sensitized solar cells (dscs) and stable modules (dscms) based on natural apocarotenoids pigments

We present a study on dye-sensitized solar cells (DSCs) and we fabricate dye-sensitized solar modules (DSCMs) based on natural apocarotenoids extracted from the achiote's seeds (annatto). Use of less polar solvent such as diethyl ether improves the bixin concentration in the annatto extract which, was employed as sensitizer in the devices.

Read more...

PEROVSKITE SOLAR MODULES

Perovskite Solar Modules with 95% Aperture Ratio

Fully laser processed Perovskite Solar Cell modules with 95% Aperture Ratio

Laser patterning has been applied to realize Perovskite solar modules with a ratio between active and total substrate area of 95% and an efficiency of 9.3%. These values are new records for large area (14.5 cm2) fully laser processed perovskite devices. This work signs a forward step to the industrialization of perovskite based solar technology. Results have been published on IEEE Journal of Photovoltaics DOI: 10.1109/JPHOTOV.2017.2732223

GRAPHENE-PEROVSKITE

Graphene-Perovskite Solar module with efficiency 12.6%

Graphene-Perovskite Solar module with efficiency 12.6% on 50 cm2

Graphene interface engineering (GIE) is proposed as an effective way to boost efficiency in Perovskite solar cells and modules. A record efficiency of 12.6% on 50 cm2 module active area has been achieved by introduce Graphene in the mesoporous TiO2 and lithium neutralized graphene oxide (GO-Li) at the mTiO2/perovskite.
Results have been published on ACS Energy Lett. 2017, 2, 279−287

Get the article...

REDUCED GRAPHENE OXIDE

Reduced Graphene Oxide

Reduced Graphene Oxide as Efficient and Stable Hole Transporting Material in Mesoscopic Perovskite Solar Cells
Nano Energy
DOI: 10.1016/j.nanoen.2016.02.027

Get the article...

PEROVSKITE MODULE

perovskite module

We fabricated the first perovskite-based monolithic series-type module showing very promising results in terms of the power conversion efficiency, the reproducibility of the fabrication process and long-term stability.

Leggi tutto...

PEROVSKITE SOLAR CELLS

We fabricated perovskite based solar cells using CH3NH3PbI3-xClx with different hole transporting materials such as Spiro-OMeTAD and P3HT.

Leggi tutto...

SDSC MODULE

We fabricated the first solid state dye solar cell (SDSC) module using poly(3-hexilthiophene) (P3HT) as Hole Transport Material for the dye regeneration process.

Leggi tutto...

A COATING FOR ALL

Fully sprayed polymer solar cell modules open the way to bring Photovoltaics nominally everywhere, thanks to spray coating conformability to virtually any kind of substrate.

Leggi tutto...

GREENHOUSE

THE PHOTOVOLTAIC GREENHOUSE

We have demonstrated the feasibility of the fabrication of a photovoltaic greenhouse roof by using techniques based on solution processing (spray coating and screen printing).

Leggi tutto...

Questo sito web utilizza i cookie per capire come viene utilizzato il sito e per permettere l'accesso all'area riservata. I cookie non permettono di identificare l'utente. I cookie sono salvati sul tuo browser e sono utlizzati per personalizzare la tua esperienza sul nostro sito web. Continuando la navigazione sul nostro sito senza modificare le impostazioni, accetti il nostro utilizzo dei cookie. Comunque potrai modificare le tue impostazioni dei cookie in qualsiasi momento.